# B.Sc. 4th Semester (Honours) Examination, 2023 (CBCS)

Subject : Physics

Course: CC-IX

## (Elements of Modern Physics)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

## Group-A

1. Answer any five questions:

 $2 \times 5 = 10$ 

(a) What is meant by a wave packet? Why do we need it?

1+1

- (b) The life-time of an excited state of an atom is  $10^{-8}$  s. Calculate the minimum uncertainty in the determination of the energy of that excited state. (Given  $h = 6.6 \times 10^{-34}$  J.s)
- (c) In one dimension the wave function of a particle is represented by  $\psi(x) = \sqrt{a}e^{-ax}$ . What is the probability of finding the particle in the region between  $x = \frac{1}{a}$  and  $x = \frac{2}{a}$ ?
- (d) What do you understand by quantum tunnelling? Mention one of its application.

1+1

- (e) State the basic assumptions related to the single particle shell model of nucleus.
- (f) Mention the different types of nuclear reactors. Why do we use a moderator in a nuclear reactor?
- (g) What do you mean by 'induced or artificial radioactivity'?
- (h) What does the acronym 'LASER' stand for? What are the 'metastable states'?

1+1

#### Group-B

2. Answer any two questions:

5×2=10

- (a) (i) Find the probability current density associated with a plane wave Ae<sup>ikx</sup> in one dimension and verify that it satisfies the equation of continuity in one dimension.
  - (ii) Find the probability current density for a real wave function.

(2+2)+1

- (b) (i) Define the terms 'stopping potential  $(V_0)$ ' and 'threshold frequency  $(v_0)$ ' in the case of photo-electric effect.
  - (ii) Show that Planck's constant (h) has the dimension of angular momentum.

3+2

Please Turn Over

- (c) (i) Give the definition of 'binding energy  $(E_b)$ ' of a nucleus.
  - (ii) <sub>2</sub>He<sup>4</sup> nucleus has no magnetic moment. Explain.
  - (iii) A reactor is producing energy at the rate of  $32 \times 10^6$  watts. How many atoms of U-235 do undergo fission per second?

(Assume that on an average 200 MeV is released per fission.)

2+1+2

(d) What are Einstein coefficients? Derive the relation between them.

### Group-C

3. Answer any two questions:

 $10 \times 2 = 20$ 

- (a) (i) Deduce Planck's law of radiation.
  - (ii) A proton is confined to a nucleus of radius  $5\times10^{-5}$  m. Calculate the minimum uncertainty in its momentum and also calculate the minimum kinetic energy the proton should have. The proton mass is  $1.67\times10^{-27}$  Kg.
- (b) (i) Establish the Geiger law  $R \propto v^3$  for mono-energetic  $\alpha$ -particles (the symbols have their usual meanings).
  - (ii) What is Geiger-Nuttal law? State the importance of this law.
  - (iii) Using semi-empirical binding energy formula, calculate the binding energy of  $_{20}Ca^{40}$ .  $_{20}Ca^{40}$ .
- (c) (i) A betatron working on an operating frequency of 60 Hz has a stable orbit of diameter 1.6 m. Find the energy gained per turn and also the final energy if the magnetic field at the orbit is 0.5 Tasla.
  - (ii) What is a nuclear reactor? What are the essential elements of a nuclear reactor?
  - (iii) Write down all possible conservation laws of nuclear reactions.

2+(1+3)+4

- (d) (i) Discuss the significance of the results of Davisson-Germer experiment.
  - (ii) What are the different natural radioactive series?
  - (iii) Explain, in brief, the construction and working principle of (Pulsed) Ruby laser.

2+2+(3+3)